CXCR2 macromolecular complex in pancreatic cancer: a potential therapeutic target in tumor growth.

نویسندگان

  • Shuo Wang
  • Yanning Wu
  • Yuning Hou
  • Xiaoqing Guan
  • Marcello P Castelvetere
  • Jacob J Oblak
  • Sanjeev Banerjee
  • Theresa M Filtz
  • Fazlul H Sarkar
  • Xuequn Chen
  • Bhanu P Jena
  • Chunying Li
چکیده

The signaling mediated by the chemokine receptor CXC chemokine receptor 2 (CXCR2) plays an important role in promoting the progression of many cancers, including pancreatic cancer, one of the most lethal human malignancies. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif at its carboxyl termini, which might interact with potential PDZ scaffold/adaptor proteins. We have previously reported that CXCR2 PDZ motif-mediated protein interaction is an important regulator for neutrophil functions. Here, using a series of biochemical assays, we demonstrate that CXCR2 is physically coupled to its downstream effector phospholipase C-β3 (PLC-β3) that is mediated by PDZ scaffold protein Na(+)/H(+) exchange regulatory factor 1 (NHERF1) into a macromolecular signaling complex both in vitro and in pancreatic cancer cells. We also observe that disrupting the CXCR2 complex, by gene delivery or peptide delivery of exogenous CXCR2 C-tail, significantly inhibits the biologic functions of pancreatic cancer cells (i.e., proliferation and invasion) in a PDZ motif-dependent manner. In addition, using a human pancreatic tumor xenograft model, we show that gene delivery of CXCR2 C-tail sequence (containing the PDZ motif) by adeno-associated virus type 2 viral vector potently suppresses human pancreatic tumor growth in immunodeficient mice. In summary, our results suggest the existence of a physical and functional coupling of CXCR2 and PLC-β3 mediated through NHERF1, forming a macromolecular complex that is critical for efficient and specific CXCR2 signaling in pancreatic cancer progression. Disrupting this CXCR2 complex could represent a novel and effective treatment strategy against pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of CXCLs/CXCR2 axis in the tumor microenvironment might be a potent therapeutics for pancreatic cancer

Pancreatic cancer is characterized by expanded stroma with marked fibrosis. In Ijichi et al., we show that inhibiting CXCR2 disrupts tumor-stromal interactions and improves survival of a genetically-engineered mouse model recapitulating human pancreatic cancer. Targeting CXCLs/CXCR2 axis in the tumor microenvironment might be a potent therapeutic strategy for pancreatic cancer.

متن کامل

CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma

CXCR2 has been suggested to have both tumor-promoting and tumor-suppressive properties. Here we show that CXCR2 signaling is upregulated in human pancreatic cancer, predominantly in neutrophil/myeloid-derived suppressor cells, but rarely in tumor cells. Genetic ablation or inhibition of CXCR2 abrogated metastasis, but only inhibition slowed tumorigenesis. Depletion of neutrophils/myeloid-derive...

متن کامل

Monoclonal Antibody Production Against Vimentin by Whole Cell Immunization in a Mouse Model

Background: Pancreatic carcinoma is the fourth-leading cause of cancer death in the United States and due to its late presentation, only few patients would be candidates for the curative treatment of pancreactomy. Monoclonal antibodies have brought hope to targeted therapy.Objectives: To identify new biomarkers, a panel of monoclonal antibodies was genera...

متن کامل

CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer.

Angiogenesis is essential for tumor growth and metastasis. Although ELR(+)-CXC-chemokines and their corresponding receptor, CXC-receptor 2 (CXCR2), are known mediators of angiogenesis, little is known about their role in pancreatic cancer (PaCa). The aim of our study was to determine the role of ELR(+)-CXC-chemokine/CXCR2 biological axis in promoting PaCa angiogenesis. We prospectively collecte...

متن کامل

CXCR2+ MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion

Although myeloid-derived suppressor cells (MDSCs) have been demonstrated to contribute to tumor initiation, progression and metastasis, however, which MDSC subsets are preferentially expanded and activated, and what's the key molecular mechanism responsible for specific MDSC subsets in promoting tumor progression need to be fully addressed. Here we identify that Ly6GmiLy6CloCD11b+CXCR2+ subpopu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Translational oncology

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2013